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Artist’s view of heavy-ion collisions
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Why particle correlations?

Single particles can only measure production
rates and kinematic distributions

High-energy collisions are complex—need
particle correlations to measure the complex
structure of the collision system

Particle correlations measure jet-like
correlations, flow, etc.

Majority of measurements in heavy-ion
collisions are done by particle correlations



Two categories of correlations

* Few-body, e.g.
— Jets
— Resonance decays

Jetof particles

JET QUENCHING

In a collision of protons, hard
scattering of two quarks produces
back-to-back jets of particles.

'@, " @+

* Many-body, event-wise

— Collective flow
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Analysis techniques
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Tracking efficiency is corrected for associated particles.

Trigger particles are often uncorrected, because correlations are normalized per trigger.
Better to have trigger particle correction as well.

Two-particle acceptance often corrected by mixed-events: B(An, A¢)/ B(0,A4¢).
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Particle correlations
in heavy-ion collisions



Jet correlations

EVIDENCE FOR ADENSE LIQUID

Two phenomena in particular point to the quark-gluon medium being

Jetquenchingimplies the quarks and gluons are closely packed, an

Jotof particles

JET QUENCHING

In a collision of protons, hard
scattering of two quarks produces
back-to-backjets of particles.

+®, " O

Inthe dense quark-

gluon medium, the jets

are quenched, like PR amants
bulletsfired into water, sa e an® -
andon averageonly sat®a #=——Quark-gluon
singlejetsemerge. » medium

Hard-scattering between
partons in pp.

Calculable by pQCD

Fragmentation of partons
produces back-to-back jets
of hadrons.

Jets are clustered in angle
and rich in high-p; particles.

Jets produced in AA
traverse and interact with
the medium, lose energy
and thus carry
information of the
medium.
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Particle correlations: focus on away side

AuU+Au
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The near-side is also interesting
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Triangular flow in heavy-ions

* Double-peak away-side
correlations

* Long-range near-side ridge
* Triangular flow, v,
* Other odd harmonics

Initial spatial fluctuation Momentum anisotropy
(triangularity) triangular flow v,
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v, are measured by two-particle correlations

V_ from two-particle correlation ALICE, Phys. Rev. Lett. 107 (2011) 032301
. L Centrality 0%-1%, || < 0.8 ._'
Subtract v, from two-particle 1102; . fani>1
. F Vazasl2 lan] > 1) ‘
correlation el |
Almost a tautology 1.004 2 NS
2 1.002 ek | 7
Comparison to hydro gives us N R R %{}x;ﬁi'/j\*%
confidence that v, are mostly 0998 } - / ' ?( R
from flow s 3

0.994 © e
Quantitatively how much is flow 090t Wi M e
and how much is nonflow— = gh O SE 8 B =

. . Ad (rad)
still an open question.

Hydro has some tension to simultaneously describe v, and v,

Important to reduce/eliminate nonflow contributions to flow;
do as best a job as we can.



i) AN/CIA0

(1/N

EP-dep. correlation with v subtraciton

Strategy:

Measure v, by two-particle correlation with one particle at as low p; as
feasible, to maximally reduce nonflow contaminations.
Subtract v, measurements from two-particle correlations at high and

intermediate p-.

Ap=0-0, [rad]

Open questions:
* Effect of jets on event plane reconstruction?
Are any remaining correlations still coming from hydro flow, i.e. jets are

completely gone?



Particle correlations
in small systems



Ridge in small systems

usual p-p collision

Minimum Bias
no cut on multiplicity

(b) MinBias, 1.0GeV/c<p, <3.0GeVlc

R(AT,A0)

New “ridge-like” structure extending to large An at A¢p ~ 0

A

v

high multiplicity p-p collision

High multiplicity data set
and N>110

CMS, JHEP 1009 (2010) 091
(d) N>110, 1.0GeV/c<p_<3.0GeV/c
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Why wasn’t it discovered long ago by HEP?

Two types of discoveries:
— Theoretically predicted, and experimentally verified
— Surprises

HEP moved on to more exclusive processes

There may be still important physics that were missed in
last half century



p-p collision (high Mult.)

Physical origin unclear

CMS, JHEP 1009 (2010) 091

(d) N>110, 1.0GeV/c<p_<3.0GeV/c
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p-Pb collision (high Mult.)

P Pb

CMS Preliminary CMS, PLB718

- filine
PPb 45, = 5.02 TeV, N°T'™ 2 11
1<p_<3GeVic

o 7T (2013) 795

dz Npaw
N, dAn dAG

Much bigger than pp
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Dusling and Venugopalan, arXiv:1302.7018

CGC/Glasma

There is an intrinsic correlation in azimuthal angle coming from the two-particle pro-
duction process, such as the one shown in Fig. 11 [92]. There is only a single loop mo-
mentum Kkt in this two-particle production process, causing correlations. Because the
single gluon distribution peaks at the saturation scale (s, large probability is found for
production of two particles with their momenta pr and g7 parallel to each other such
that |pr — k| ~ Qs and |gr — k1| ~ Qs. These processes therefore cause small angle
correlations at A¢p = 0. Because the correlations originate from the very early times of
the collision, Tin;t, they can persistent to large rapidity differences, Ay = 2In( ¢, /Tinit.)
where 1;, is the particle freeze-out proper time.

L 2N Dusling & Venugopalan 1211.3701
Nrvig dAd

N

ALICE Result (vs=5.02 TeV)
O proten =0.336 GeV2 (V5=200 GeV) —— |
bottom to top: NE° = 3,6,10,14,22

2<plM 4 GeV: 1<pPc2GeV

0 1 2 3 4
Ad




Another explanation: Hydro flow

In heavy-ions, subtract v, = non-zero finite correlation: near-
side large An ridge, away-side double peak = v,

In pp, PA (and possibly dA) systems, subtract uniform pedestal
—> non-zero finite correlation: large An ridge = v, (and v;)
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Acceptance correction revisited

L.Xu,C.H.Chen,FW, PRC88 (2013) 064907
Two-particle acceptance correction by

mixed-events is, in principle, wrong. &
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Dihadron per trigger pair density

L. Xu (CMS) QM 2014
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Ridge yield vs n_..,.
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* Near-side ridge yield: different n dependences for p-going
and Pb-going triggers



n-dependence of v,(n)/v,(0)
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Flow correlations



Anisotropy Parameter v,

coordinate-space-anisotropy =  momentum-space-anisotropy

y Py
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Collectivity, Deconfinement at RHIC

V8, =200 GeV ' Au + ¥ Au Collisions (min. bias)

(a) h (b)
N ri £
ol *4 $
& + | 4
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5- A pip  H A+A ?F‘r [ TN
0 1 2 3 4 5 6 0 1 2 3 4 5 G
Transverse momentum p, (GeV/c)
(c) ¢ it O KE (d)

1 1.5 2 2.5

prnq (GeV/c)

0 0.5 1 1.5 2 2.5

(m - maSS}r'nq (GeV)

Low p+ (< 2 GeV/c):
hydrodynamic mass
ordering

High p; (> 2 GeV/c):
number of constituent
quarks scaling

Quark degrees of
freedom,
deconfinement,
Partonic Collectivity,
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Comparison with Hydrodynamics

| MC-KLN  hydro (n/s)+UrQMD _ n/s | MC-Glauber  hydro (n/s) + UrQMIlﬁ {']1-*;}5
0.0 :
025 (a) _(b) -7 JE0/08
! 0.08 o~ -
02| 0.16 [ . P Rl = _.___' 0.16
w 24 [ /.--'Féim".—‘odHﬂ.M
015 - ¢ o PR o
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0.1 - /; A
{,}} f(E‘ﬁ >1.-'3 - ” v ,}} <£2 >1_
0.05 Voues kN | o 21 part/ Gl
L <& <V3> / (:Epar'l)KLN ( O <VE> / <EIJRIT>G1
0 , | , | : | , , | , | , |
0 10 20 S 30 0 10 20 30 40
(1/S) dN_, /dy (fm ") (1/S) dN_, /dy (fm )

Model: Song et al. arXiv:1011.2783

=>» Small value of viscosity to entropy density ratio n/s
=» Model uncertainty dominated by initial eccentricity
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Low n/s for QCD Matter at RHIC

Physics Today, May 2005 o 15 1 s o 1A

200

== Helium 0.1 MPa
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Viscosity quantum limit

I

n= Erzp/mfp
*%F
v lmfp =1/(no)
—_
. p[mfp > h
S ~ 4nk,
F_,o
ATy nls>hnlark,
nls>1/4r

Kovtun, Son, Starinets, PRL 94 (2005) 111601
Schafer, arXiv:0912.4236
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Does it have to be all
pressure-driven hydro flow?



Uncertainty principle
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D. Molnar, FW, and C.H. Greene, arXiv:1404.4119
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»  Infinite square well
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N Harmonic oscillator
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Bose-Einstein Condensate

bosons:
integer spin
\ f
\ /
\ /
\ /
\ /

D. S. Jin and C. A. Regal

Single ground state in anisotropic trap = large momentum anisotropy
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Thermal probability

fermions: fermions:
half-integer spin half-integer spin
\ f \ ]
".‘t f’
— EFETI‘HI '\ f _> EFermi
O spind O spind
@spint @spint

X, y at same Fermi energy, so different number of filled energy levels.

At high temperature, classical limit, sum is approximated by integral:

H T
dN  _ \ fﬂTrE 1(p.r)/
dp B rdrdpe_-”l{lj r)/T

—Kip)/T

._\\'T "dPE_h|p] T

then it’s independent of potential.
It’s isotropic at all temperature because K=(px2+py2)/2m is isotropic.
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Is QGP hot?

Sizer~1fm
Intrinsic momentum/energy scale ~ 1/r ~ 200 MeV

QGP temperature T~ 300 MeV
Typical momentum/energy ~ T ~ 300 MeV

QGP is not hot at all.
Quantum effect must be present.



Thermal probability weight
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Initial v, from QM
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D. Molnar, FW, and C.H. Greene, arXiv:1404.4119
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D. Molnar, FW, and C.H. Greene, arXiv:1404.4119
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Vs (X ID-:}

Typical Au+Au collisions

b=8 fm: (r2)!/? = 1.5 fm and (r7)"/? = 2.2 fim

30
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D. Molnar, FW, and C.H. Greene, arXiv:1404.4119



Transverse profile from SHO

i T ) 2
=\ g/ i \

This may not correspond exactly to heavy-ion collision
energy density profile, but close.



100 ps

Cold atoms
Strong elliptic anisotropy

200 ps
K. M. O’Hara et al., Science 298, 2179 (2002).

S Lithium atoms M ~ 6000 MeV

Temperature T~ 1 uK ~ 1016 MeV

T [ ~ 20 ~ 100
— rap size x um, y um

Typical momentum (TM)¥2~ 10¢ MeV

Intrinsic momentum quantum ~ 1/r ~ 108 MeV, negligible.
800 us

Typical energy ~ T~ 1016 MeV

Intrinsic energy quantum 1/(mr?) ~ 10-2° MeV, negligible.
1000 ps

Cold Lithium atoms are actually “hotter” than the hot QGP.
1500 ps B2 -

Ty ot R ~ -5
2N o) 1+e 10

2000 ps The observed large v, is indeed due to strong interactions.
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Is quantum v, real?

* It should be... but need experiment to verify
* Would be neat to verify QM and uncertainty principle

Cold atom experiment

* Need trap size x100 smaller
* Or need nano-Kelvin temperature

Proposing a cold atom quantum simulator for high-energy nuclear physics
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Control the interaction

Hydrodynamics is only an assumption

s initial QM v, important after hydro evolution?
When does hydro sets in and takes over?

Will the initial QM v, be washed out by hydro?
Current hydro implementation is classical

Need to incorporate QM into hydro: quantum
hydrodynamics



Shooting fast atoms through trap

* jet-quenching partonic energy loss mechanisms are far from
clear. A very active and extensive field

* Can we gain insights from cold atoms?
* Shoot fast atoms through cold atom system

PHYSICAL REVIEW A 85, 053643 (2012)

Probing strongly interacting atomic gases with energetic atoms

Yusuke Nishida
Center for Theoretical Physics, Massachuseits Institute of Technology, Cambridge, Massachusetis 02139, USA and
Thearetical Division, Los Alamos National Labaratory, Los Alamos, New Mexico 87545, USA
(Received 26 October 2011; revised manuscript received 9 April 2012; published 29 May 2012)

We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The
operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both
in a spin-1,/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo

* External hard probes under full control

48



Summary

Particle correlations are a powerful tool to study pp, pA, AA collisions

Unambiguous signal of strongly interacting QGP from high-p; jet-
quenching data.

Low p; anisotropic flow data indicate hydrodynamic behavior of sQGP.
Extracting transport properties (such as 1n/s) from measured data still
need extra effort. Initial anisotropy may not be neglected.

There should be indispensable information at intermediate p; from jet-
medium interactions (not discussed in this lecture). Need creative mind
and novel approaches.



